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Exciton dephasing in crystals due to the phonon scattering is studied within the framework of the sto-
chastic Haken-Strobl model. The model corresponds to the extremely fast-modulation limit and is appl-
icable to triplet excitons in molecular crystals. The model describes the crossover from the coherent
(band) short-time exciton dynamics to incoherent diffusive motion on the long time scale. An efficient
method for the determination of the moments of the exciton displacement is developed. Analytic expres-
sions for the mean-square displacement tensor and for the fourth-order moment of exciton displacement
on a three-dimensional lattice with inversion symmetry are derived. Solution of the model for arbitrary
initial conditions is obtained. The equilibrium state of the system corresponds to the uniform population
of the states in the exciton band. The equilibration time scale coincides with the time scale on which the
crossover between coherent and diffusive motion occurs. It is given approximately by the inverse ampli-
tude of the second-order correlation function of the stochastic modulation. Physical assumptions under-
lying the model and the range of its applicability are discussed.

PACS number(s): 02.50.+s, 71.35.+2z

I. INTRODUCTION

Experimental data on the temperature dependence of
the photoconductivity in naphthalene crystals [1-3] and
on the line shape and mobility of excitons in molecular
crystals [4—10] show that neither the band mechanism,
nor the hopping mechanism (diffusion), can describe the
transport of electrons and excitons in molecular crystals.
These two mechanisms are in a certain sense complemen-
tary. The band mechanism applies at short times, while
the hopping mechanism is realized on longer time inter-
vals. The actual time scale, on which the crossover be-
tween the two mechanisms occurs, coincides with the
time scale on which the phase of the wave function of an
exciton (electron) is destroyed. This phase destruction
(dephasing) originates from scattering on impurities
and/or lattice imperfections or on photons. In ideal crys-
tals scattering on phonons is the only mechanism. The
dephasing time scale depends on the exciton- (electron-)
phonon coupling strength and on the thermal population
of the phonon states. At low temperatures the phonon
modes are frozen, hence the scattering cross section of
the exciton (electron) is small. In this limit the motion is
quasicoherent and can be described by the band mecha-
nism. On the other hand, at high temperatures the
scattering cross section is large and the exciton mean free
path is of the order of a lattice constant. According to
the Ioffe-Regel criterion the exciton (electron) motion in
this limit is diffusive. In an intermediate temperature re-
gime both mechanisms are required for the adequate
description of the transport. Models which allow simul-
taneous description of both the coherent (band) and the
incoherent (diffusive) motion of the exciton are therefore
of considerable interest. The microscopic small polaron
model [11] which has been widely used for electrons [12]
and excitons [13-17] in molecular crystals is a well-
known example of such a model.

An alternative approach is based on phenomenological
stochastic models [18—-21]. These models may be viewed
as the finite exciton bandwidth generalizations of the
Anderson-Kubo [22,23] stochastic model in the line-
shape theory. Within these models the incoherent exci-
ton scattering is described by stochastic modulation of
the matrix elements of the resonant interaction. The
latter is responsible for the exciton delocalization and the
coherent transport. The effect of the exciton-phonon
coupling is reduced within the stochastic models to the
loss of coherence (dephasing). This limitation is severe,
since it ignores important physical effects, such as the
phonon sidebands of excitonic transitions and the exciton
self-trapping [24]. On the other hand, the models have
the important advantage of being analytically solvable
[18,19,25-30].

In this paper the general three-dimensional (3D)
Haken-Strobl model with inversion symmetry is studied.
The model corresponds to the extremely fast modulation
limit, and predicts a Lorentzian line shape for the pho-
nonless exciton band. The physical condition for the ap-
plicability of the model is that the exciton bandwidth is
small compared to both the thermal energy and the pho-
non bandwidth. This condition is satisfied for the lowest
triplet excitons in molecular crystals. In fact the Haken-
Strobl model has been useful for the description of line
shapes in optical absorption and luminescence spectra
[5-7], as well as ESR [4] and NMR [31] spectra of the
lowest triplet excitons in molecular crystals.

The paper is organized as follows. In Sec. II the for-
malism is outlined together with physical assumptions
underlying the model. A derivation of the stochastic
Liouville equation is presented in Sec. III. It is em-
ployed in Sec. IV to obtain analytic expressions for the
first two nonvanishing moments of the exciton displace-
ment within the 3D Haken-Strobl model with inversion
symmetry. An alternative nonlocal time formalism based
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on the generalized master equation is studied in Sec. V.
The expressions for the moments are used to determine
the memory functions. In Sec. VI a proof is presented for
the absence of energy dissipation within the model. The
phase mixing is shown to be the only effect of scattering.
The Nyquist theorem allows one to establish the relation-
ship between the absence of energy dissipation and the
vanishing exciton mobility. Solution of the model for ar-
bitrary initial conditions is obtained in Sec. VII. It is
shown that the equilibrium state corresponds to uniform
population of the exciton band. Finally, Sec. VIII con-
tains a brief summary of the results together with an
analysis of the model’s limitations and its range of appli-
cability.

II. THE MODEL

A. Formalism

The Haken-Strobl model is described by the Hamil-
tonian [18,19]

A

H(t)=A,+P(1)

:RER {h(R,-,Rj)+v(R,-,Rj;t)}6;i6Rj, (2.1)
]

where fi};i and @ are the exciton creation (annihilation)

operators on lattice site with coordinate R;, and the sum-
mation is over the lattice sites. The first term in the
Hamiltonian accounts for the coherent exciton transfer
with

(R, R)={y(r —R)| Holr —R;))

being the matrix element of the resonant interaction be-
tween the wave functions localized on the ith and jth lat-
tice site, respectively. The incoherent exciton scattering
by the phonons is modeled by the stochastic potential,
v(R;,R j;t), which describes the modulation of the reso-
nant matrix elements. The stochastic potential is as-
sumed to be a Gaussian Markovian process with vanish-
ing correlation time (fast modulation limit). It is there-
fore completely characterized by the first two correlation
functions

(v(R;,R;;1)) =0 (2.2)
and

(v(R;,R;;t)0 (Ry,R51))
=2g(R,,R;)8(1 —t'){aﬁfaﬁﬁzsﬁjaﬁf_ — 8355 " ).
2.3)

The angle brackets denoteRthe averaging over the states
of the thermal bath and SR{ =6(R;—R;). In the follow-

ing we shall assume that the lattice has an inversion
center. From the translation and the inversion symmetry
of the lattice it follows that h (R;,R;)=h(|R;—R;|) and
g(R;,R;)=g(|R,—R;|).

The problem is simplified by the use of the momentum
(Bloch) representation. In this representation the Hamil-

tonian is recast in the form

A= [d*qelqala,+ [d’q, [d*,0(a1,0208 ] 8,

(2.4)
where
e(@)= h(R;)exp(—igR;) (2.5)
Ri
and
v(g1,q250)=—"—+ (R, R;31)
91,9, (2m)} R,,ERJ-U j
Xexp{i(q,R;—q,R;)}. (2.6)

Integration in Eq. (2.4) is over the states in the first Bril-
louin zone. The formulas above have been written for the
particular case of a simple cubic lattice (lattice constant is
set equal to unity). Extension of these formulas for arbi-
trary centrosymmetric lattices is straightforward.

B. Assumptions and approximations

The physical assumptions underlying the Haken-Strobl
model can be summarized as follows.

(a) Single-particle approximation. The exciton-exciton
interaction is neglected within the model. This assump-
tion limits the range of applicability of the model to small
excitation concentrations (low laser intensities). On the
other hand, it makes the quantum statistical effects ir-
relevant, so that the model is also applicable for elec-
trons.

(b) Fast modulation limit. The vanishing correlation
time assumption [see Eq. (2.3)] implies that the exciton
bandwidth is much smaller than the phonon bandwidth
[13,14]. This condition is satisfied for triplet excitons in
molecular crystals.

(c) Macroscopic population of phonon states. The pho-
nons are treated within the model as a thermal bath
which modulates the resonant interaction. The effect of
an exciton on the phonon bath is neglected. This as-
sumption implies macroscopic population of the phonon
modes, which holds above the Debye temperature.

(d) Continuous phonon spectrum. Replacement of the
phonon bath by a stochastic Gaussian field is valid if the
spectrum is continuous.

(e) Weak exciton-phonon coupling. The model implicit-
ly assumes that the exciton-phonon coupling is weak.
The actual criterion of the weakness is that the formation
of bound exciton-phonon states is impossible [16,17].
The only physical effect of the coupling under this condi-
tion is incoherent scattering, which results in narrowing
of the phononless exciton band and in dephasing. This
assumption constitutes a severe limitation since it pre-
cludes the use of the Haken-Strobl model to describe
such physical effects as exciton self-trapping [24] and the
phonon sidebands of the excitonic transition.

(f) Statistical independence of fluctuations. The fluctua-
tions of the different matrix elements of the Hamiltonian
are assumed to be statistically independent [see Eq. (2.3)].
This assumption is not justified if the exciton is scattered
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on the acoustic phonons. However, it is valid if the
scattering on the intramolecular modes dominates [14].

(g) Narrow exciton band. The states within the exciton
band are assumed to be uniformly populated. Formal
proof of this treatment can be found in Sec. IV. It is
physically equivalent to the assumption that the exciton
bandwidth is small compared with the thermal energy
Ae <<kT. The latter condition holds for the lowest trip-
let excitons in molecular crystals for temperatures above
~20 K.

Having thus specified the model we turn to the analysis
of the exciton dynamics. The latter can be studied from
the time evolution of the density matrix. Two formally
equivalent approaches can be used for this purpose. The
first one, based on the stochastic Liouville equation
[32,33], will be employed in the following section. The
alternative approach based on the generalized master
equation [34-36] will be discussed in Sec. V.

III. STOCHASTIC LIOUVILLE EQUATION
Our starting point will be the quantum-mechanical
equation of motion for the density matrix (#=1):
plk,k';t)=—i[e(k)—e(k")]p(k,k';1)
—i fd3q[ﬁ(k,q ;0plg,k'st)
—v(q,k';t)p(k,q;t)]. (3.1)

Evaluation of the observables, however, requires the
knowledge of the coarse-grained density matrix,
(p(k,k';t)). Averaging of Eq. (3.1) over the states of the
phonon bath results in the stochastic Liouville equation
(SLE) for the coarse-grained density matrix [28,30]

(plk,k’;t))=—{T+i[e(k)—elk")]}{plk,k";t))

1
(2m)3

Jd*q Stk +q/2;k'+4/2)

X{plk +q,k'+q;1)), (3.2)

where the following notations have been introduced:

9(g,q")=—2g(0)+2 3 g(R;)
R

X{cos[(g +q')R;]+cos[(g —¢q')R;]} (3.3)

and

R

(3.4)

For subsequent use the SLE, Eq. (3.2), will be rewritten in
an equivalent form. We introduce the variables
s=(k +k’)/2 and u =(k —k')/2 and recast the coarse-
grained density matrix in the form

(plk,k’;t)) =F (u,s;t)exp(—T1).
Using the periodicity of the function F(u,s;t)
F(u,s +2m;t)=F (u,s;t),

(3.5)

Eq. (3.2) can be recast in the form

F(u,s;t)=P(u,s)F(u,s;t)
1

+ o7 Q) [d3q F(u,q;0)
+ [d3q R(s5,q)F (u,q;1) (3.6)
with
P(u,s)=2i > h(R;)sin(uR;)sin(sR;), (3.7)
Ri
Q(u)=27 g(R;)cos(2uR;), (3.8)
Ri
and
R(s,q)=2 3 g(R;)cos[(s +g)R;]. (3.9
Rﬁﬁo

Laplace transformation of SLE, Eq. (3.6), with respect to
the time variable

d(u,s;p)= fo dt exp(—pt)F (u,s;t)
leads to

pdlu,s;p)=F(u,s;0)+P(u,s)p(u,s;p)
: {Q(w) [d’q ¢(u,q;p)

27)}
+ [d% R (s;q)$(u,q;p)}.  (3.10)

The function F(u,s;0) is the coarse-grained density ma-
trix at the initial time (£ =0). We shall assume that an
exciton is initially localized at the lattice origin (R; =0).
This assumption is formally equivalent to

1
(2m)*
This completes the definition of the model. Below the

SLE, Eq. (3.10) will be employed for the calculation of
the momentum of the displacement of an exciton.

+

F(u,s;0)=

(3.11)

IV. MOMENTS OF DISPLACEMENT

In this section a method for finding the moments of the
exciton displacement within the Haken-Strobl model is
developed. For illustration, explicit results for the first
two nonvanishing moments are obtained (odd order mo-
ments of the displacement vanish identically due to the
inversion symmetry). These moments provide the infor-
mation about the exciton dynamics in the whole time
domain. In particular, they exhibit the crossover from
the coherent short-time motion to diffusive motion on the
longer time scale. An important advantage of the
Haken-Strobl model is that in certain cases exact analytic
expressions for the moments can be obtained. Thus
Schwarzer and Haken [25] and Reineker [26] derived an
expression for the mean-square displacement (MSD) for
the one-dimensional (1D) model with nearest-neighbor in-
teractions (see also [29]). Their result has been extended
to include non-nearest-neighbor interactions in [27] and
[30]. Below we derive an expression for the MSD tensor



70 ILYA RIPS 47

for the general 3D Haken-Strobl model with inversion
symmetry. The approach has an advantage compared
with those used previously in that it can be employed to
evaluate the higher-order moments of the displacement.

A. Mean-square displacement tensor

Our starting point will be the expression for the MSD
tensor in terms of the coarse-grained density matrix:

2 IR
(rlz/k(t)>=_fd3ka <e(k,k ,t))

@.1)
dk ' dk,

k'=k

with k; denoting the projection of the vector k' on the
vth axis. Using Eq. (3.5) we can recast Eq. (4.1) in the
form

() === [ 7" dp expl(p — 1]

X fd3s #:5(0,5;p)

where the shorthand notation

2 .
$13(0,5;p)= TSR]

Oou,du,

(4.2)

u=0

has been introduced. The problem is reduced to evalua-
tion of the integrals

Z,(p)= fd3s &5 (0;5,p).

This can be done using the Laplace transformation of the
stochastic Liouville equation, Eq. (3.10).

From the definition of the functions P(u,s) and Q (u),
Egs. (3.3) and (3.4), it follows that

P(0,5)=P",(0,5)=0"(0)=0, 4.3)
0(0)=23F g(R;)=T, (4.4)
Ri
P.(0,5)=2i 3 h(R;)R}sin(sR;), (4.5)
Ri
QCJL(O)=—823(R.')R1'VR{A (4.6)

R;

i

with R;” being the projection of the lattice vector R; on
the v axis. Differentiation of the SLE, Eq. (3.10), with ac-
count of Egs. (4.3)-(4.6) leads to

P$,1(0,5;p)=P(0,5)¢5(0,s;p)+ P} (0,5)$.(0,s ; p)

1
(27)3

+fd3qR(s,q)¢;’k(0,q;p) .

4.7

Integration of Eq. (4.7) with the use of the relation
Jd’s R (5,q)=0 gives

(p —T)Z,,(p)=Q5(0)X(p)+2i Sh(R;)
R.

X[R}B,(R;;p)+R}B(R;;p)], (4.8

where the following notations have been introduced:
X(p)= fd3s #(0,s;p), 4.9)
B,(R;p)= [ d’s sin(sR;),(0,s;p). (4.10)

Straightforward analysis of the SLE, Eq. (3.10), for the
diagonal elements of the coarse-grained density matrix
(# =0) shows that

1

X(p)=—>——
P

(4.11)

and

1 1
(2m) (p—T)°
The physical implication of this result is that the diagonal
elements of the coarse-grained density matrix for the lo-

calized initial conditions are both time and momentum
independent:

¢(0,s;p)= (4.12)

1
m)?’

In other words, the exciton remains uniformly spread
over the band. Differentiation of Eq. (3.10) gives

(plk,k;t))= (4.13)

p$.(0,5;p)=P.,(0,5)$(0,s;p)

+

1 ,
Or ) T [d’q ¢,(0,q;p)

+fd3qR(S,q)¢L(0vq’P) .

(4.14)
It follows from Eq. (4.14) that
[ d3s ¢(0,5;p)=0.
Furthermore
B,(R;;p)= 20k (ROR; (4.15)

(p—T)[p +28(R;)]"

In the derivation of Eq. (4.15) the inversion symmetry of
the lattice has been used together with the relations

[ @3qsin(gR,;)sin(gR;)
(27)?

(8(R,—R;)—8(R;+R,;)}, (4.16)

fd3q sin(g, R, )cos(gR ;) =0. 4.17)

Substitution of Egs. (4.6), (4.11), and (4.15) into Eq. (4.8)
results in
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D) RIR}.

Z,p)=——"—
AP (p_r)z 3

(4.18)

Substitution of this result into Eq. (4.2) leads to the final
expression for the MSD tensor

[h(R)]?

2 = - -
(rlh =23 T +22 (&)

R.

i

g(R;)+ RivRik

[h(R)*R'R}
% [T+2g(R)]

X(exp{ —[T+2g(R;))]t}—1). (4.19)

In the one-dimensional case this expression coincides
with the result derived in [27,30].

On the short time scale (I't << 1) it follows from Eq.
(4.19) that

(r2 (1)) =t [h(R;)]*R}R}. (4.20)
R

The exciton motion in this limit is coherent and can be
described by the band mechanism. On the long time
scale (I't >>1) the expression for the MSD tensor, Eq.
(4.10), reduces to

[h(R)T

ml"-i—Zg(R,-) (4.21)

g(R,)+ RivR,-k.

(ri () =2ty
Ri

The exciton dynamics on this time scale is diffusive. The
diffusion tensor is given by

[h(R)T

D,= ———— IR'R} 4.22
vh RE F+2g(R,) |7 “.22)

g(R)+

in accordance with the result obtained in [37]. It follows
that Eq. (4.19) describes the crossover between the
coherent short-time dynamics and the diffusive motion on
the long time scale.

B. Fourth-order moment

The method can be employed to obtain the higher-
order moments of the displacement. The expression of
the fourth-order moment is derived in Appendix A. The
final result can be recast in the form

(P pao(P)) =T (P) Y20 (P) Y05, (p),  (4.23)
where
2 (A (R)T
Yihe(p)=—"5 R+
wna(P) ng g Rt T2 (R )]
XRFRYR}R?, (4.24)

Y 2o (P)=2p {7 2(p)) (P 3,(p)) + (P 2(p)) (P 2,(p))

+4{P 2, (PP L (p)) ) 4.25)

and
(3) L
YiniolP)= p2§[p+r+2g(R,-)]
(#—R;) h(R.)

X J
% [p+T—22(IR;+R;])]

J
s R(ROR(R,+R;+R,|)  _
R, (p +F+28(|R1+Rj+Rk|)}"W?~U‘

(4.26)

In these formulas (?f“,(p)> is the Laplace transform of
the mean-square displacement tensor

[h(R;))?
[p +T+2g(R,)]

<?,2w(p)>=;27}_‘, g(R)+ RFR}.
Ri

(4.27)

The symmetric fourth-rank tensor £ ,,,, is defined as

2 e =0T+ GHA A+ gl - g (4.28)
and
EM=RFM(RY+R/+RYNRJRE+RIRY)
+(R}R}M+RE(RIRI+RIRY)
+(R?+R7+RI)R}Ri+RIRY)] (4.29)

Straightforward inverse Laplace transformation of Egs.
(4.24)~(4.26) gives the final result for the fourth-order
moment of the displacement tensor, {rj.;,(£)).

V. GENERALIZED MASTER EQUATION

The analysis in the preceding section has been based
upon the stochastic Liouville equation, which is local in
time. An alternative approach is based upon the general-
ized master equation (GME) [34-36]. The latter has
been applied to the Haken-Strobl model by Kenkre
[38—40] and by Reineker and Kiihne [41-44]. The rela-
tionship between the two approaches has been established
in [39]. Reineker and Kiihne have derived an explicit ex-
pression for the memory functions for the one-
dimensional model in the first Born approximation [41],
as well as an exact expression for these functions in the
nearest-neighbor approximation [44]. Below we shall
derive the expression for the memory functions starting
from the result for the MSD tensor, Eq. (4.4), and will
show that the result is equivalent to that obtained in the
first Born approximation.

The GME can be written in the site representation in
the following form:

(=3 S dr{W R, Rt —7)0 (1)

—W(R;,R;;t —7)0 (1)}, (5.1)

where o;(t)={p(R;,R;;t)) is the diagonal element of the
coarse-grained density matrix. It gives the probability
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that the exciton is localized on the ith site of the lattice at
time . The memory functions W(R;,R;T) represent the
transition rate from the jth to the ith site of the lattice
during the time interval 7. The translation and inversion
symmetry of the lattice imply that
W(R;,R;;7)= W(|R;,—R,|;7). It is more convenient to
work with the Laplace transform of the GME:

p&:i(p)—0,;(0)="3 W(R,—R;|;p)[&;(p)—8:(p)].

R;

(5.2)

Multiplication of Eq. (5.2) by R}R j)‘ and summation over
the vectors of the lattice leads to

P(?%/A(P»: E (RiVRiA—RJYRJ‘A)W(1Ri_Rj|;p)6j(p)'
R.,R;

(5.3)

For the lattice with inversion symmetry, if R; and R; are
the symmetry vectors of the lattice so are the vectors
R;+R; and R; —R;. The use of the identity

(RYR}—RIR})=4{(RY=RNR}+R})
+(R}+R})NR}—RM}

together with simple transformation of the double sum
over the vectors of the lattice gives the following relation
between the MSD tensor and the memory functions:

(?f,k(p»:p% S W(R;p)RR}. (5.4)
R.

i

In the derivgtion the inve;\rsion symmetry of the memory
functions W(—R;;p)=WI(R;;p) has been employed.
Substitution of the explicit expression for the MSD ten-
sor into Eq. (5.4) results in

W(R.;p)=2g(R.)+ 2h (R
or
W (R;;t)=4g (R,)8(¢)+2[h (R;)Pexp{ — [T +2g (R,)]t}.
(5.6)

In the one-dimensional case Eq. (5.6) reduces to the result
of Reineker and Kiihne [41] derived within the first Born
approximation using the Nakajima-Zwanzig projection
technique [34,35]. The fact that the memory functions,
Eq. (5.6), correspond to the first Born approximation is
clear from their structure. Indeed, the expression in-
cludes only contributions from direct transitions between
the lattice sites (multiple transitions are neglected). A
natural question arises; Why is the expression for the
memory functions derived from the exact expression for
the MSD tensor, only an approximate one? The reason is
that in order to obtain exact memory functions one has to
know the diagonal elements of the average density matrix
in the site representation. This is formally equivalent to
knowledge of all the moments of the displacement tensor
and not only the second-order one. In order to clarify the

above statement it is instructive to calculate the memory
functions starting from the expression for the fourth-
order moment of the displacement. For this purpose we
introduce the moments of the memory functions:

®2,(p)=3 W(R;p)RI'R; , (5.7)
Ri
B 40(p)= 3 W(R;p)RFRIRIR. (5.8)
R;

i

The second- and the fourth-order moments of the
memory functions are related to the moments of the dis-
placement via

w2, p)=p*?L.(p) (5.9)
and
W o (P)=PXP 0o (p)) —2p°[(? L (p)) (P 3, (p))
(P 2P P2 (p)) + (P2 (p)(P L(p) ]
(5.10)

The relation between the second-order moments, Eq.
(5.9), follows from Eq. (5.4). The relation between the
fourth-order moments is derived similarly. Substitution
of the explicit expressions for the second- and fourth-
order moments, Eq. (4.27) and Eqgs. (4.23)-(4.26), into Eq.
(5.10) results in

fu;im(p)=p2[YQJM(p)+T;EJM(p)]. (5.11)

If the contribution from the term TL3‘,)M(p) is neglected
the result for the memory functions coincides with that
derived starting from the expressions for the MSD ten-
sor, Eq. (5.5), which has been shown to be the first-order
Born approximation. Thus all the information about the
correlation effects is contained in the term T;ﬁ,);\g(p),
which describes the contribution from sequential four-
step transitions. Note that this term cannot be recast in
the simple form 2R, W(Ri;p)R[‘R[VR,/\R,-”. Therefore it is
impossible to determine the memory functions uniquely
from the expression for @ 5, (p).

V1. ABSENCE OF ENERGY EXCHANGE

Up to this point we studied the loss of coherence of an
exciton. We turn now to the analysis of energy exchange
between the exciton and the thermal bath. Firstly it will
be shown that there is no energy exchange on the average
between the localized exciton and thermal bath within
the Haken-Strobl model. We start from the general ex-
pression for the average energy of an exciton

E()=(Tr{p(t)H ()} ) =Tr{{p()H (1)} ),

where p(t) and H(t) are the density operator and the
Hamiltonian, and Tr denotes the trace of the matrix. In
the momentum representation

E(n)= fd3q e(q){p(q,q,t))

+fd3q1fd3qz<p(q1,qz;t)ﬁ(qz,ql;t)>.

(6.1)

(6.2)
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The diagonal elements of the coarse-grained density ma-
trix are time independent [see Eq. (4.12)]. It follows that

E(=h0)+ [d’q, [ d?q,{p(q:,4:;0)P(q2,q1;)) (6.3)

with 4 (0) being the unperturbed energy of an exciton lo-
calized on a lattice site. The second term on the right-
J

(p(ql,qz;t)l’i(qz,ql;t))-——fd3k1fd3k2f_t dT(v(qz,ql;t)ﬁ(kl,kz;f))<

=3 J@%, [ ¥k (ol koo

hand side (rhs) of Eq. (6.3) gives the energy exchange be-
tween the exciton and the thermal bath. We shall
demonstrate below that this term vanishes. Since
U(Q,q;t) is the Gaussian stochastic field with the 5-type
time correlator, one can employ the Novikov result for
the calculation of the averages [45,46]

dp(q,,q,;t) >
80(ky,ky;7)
8p(qy,q92;1) )
8v(ky,ky;0) I’

(6.4)

where 8p(q,,q,;t)/8vU(k,k,;7) is the functional derivative. The latter can be derived from the equation of motion for

the density matrix, Eq. (3.1),

3p(q,,9,;1)
80k, k,;t)

Substitution of this result into Eq. (6.4) gives

(p(q1,42;00(q5,q130) = —i [ dk[((qy,q,;000(q,,k;0)){plk,qy;)) —{D(q3,q1;000(k,q230) ) plgy, K, 1)) ).

=—i[8(g; —ky)p(ky,q2;)—8(q, —ky)plqy, ky50)].

(6.5)

(6.6)

It follows that the contribution from the incoherent part of the Hamiltonian to the average energy of the exciton is

equal to

[ a*q; [d%a,(pla1;a2:000(a2,q:;0) = —i [ d®q, [ d°q, [ d*k [{D(gs,q,500(q1,Kk;50)) plk,q;0))

But the two terms in brackets differ by a cyclic permuta-
tion of dummy integration variables. Thus the rhs of Eq.
(6.7) vanishes identically proving the original statement
that the averaged energy of the exciton is time indepen-
dent.

Absence of energy exchange between the exciton and
the thermal bath is closely related to the vanishing exci-
ton mobility within the Haken-Strobl model [28]. The re-
lation is based upon the Nyquist theorem, which
expresses the energy dissipated (absorbed) by the
quantum-mechanical system in terms of the complex ad-
mittance [47,48],

AE= [ dwocoth(Bo/2)Tr{x (o) + X~ )] .
(6.8)

Here B=1/kT and x,,(o)(v,A=x,y,z) is the complex ad-
mittance of the system, which is proportional in our case
to the mobility. It follows that

AE= f_“’ do o coth(Bw /2)Tr{o \(@)+o; (—)}.
6.9)

Using the Onsager symmetry relations for the mobility
tensor [48] we obtain

AE=4 fo“’dw Tr{Re[0,,(®)]}o coth(Bw /2). (6.10)

Therefore the absence of energy dissipation implies

—(0(q3,9,;0)0(k,q,;1))plg k;1)) ]. 6.7

Tr{o (@)} =0, 6.11)

i.e., that the mobility in the Haken-Strobl model vanishes
[28]. On the other hand, the use of the Nernst-Einstein
relation [48] together with Eq. (4.22) for the diffusion ten-
sor leads to the following result [49]:

=0,(0)= (R)+M
Tva =T wa —B‘"RE & T T2 (R,)

i

RR}.
(6.12)

We shall discuss the apparent discrepancy between the
two results in the following section.

VII. THE INITIAL CONDITION

The localized initial condition has been chosen mainly
for technical reasons. Both the stochastic Liouville equa-
tion and the generalized master equation have a particu-
larly simple form in this case. The choice of the initial
condition leads, however, to two physical questions.

(1) Experimental realization. The question is: whether
it is possible to “prepare” experimentally a localized exci-
ton in an ideal crystal possessing translational symmetry?
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This problem has been discussed by Aslangul Kottis [50].

(2) Uncertainty principle. The localized initial condi-
tion implies that the initial momentum of the exciton is
undetermined. In other words, the exciton is initially
uniformly spread over the band. This fact alone may lead
to difficulties.

Indeed, the solution of the Haken-Strobl model with
the localized initial condition gives a number of puzzling
results.

(a) The diagonal matrix elements of the coarse-grained
density matrix in the momentum representation are both
time and momentum independent.

(b) The average energy of the localized exciton is time
independent, and its mobility vanishes.

(c) Finally, the Nernst-Einstein relation between the
mobility and the diffusion coefficient apparently does not
hold [the diffusion coefficient, Eq. (4.22), is finite].

As already mentioned, the first result implies uniform
population of the states in the exciton band. An interest-
ing question is, whether this result is associated with the
choice of the localized initial condition. This point can
be clarified by solving the SLE with arbitrary initial con-
ditions. For the diagonal matrix elements (¥ =0) Eq.
(3.10) reduces to

|

1
(k,k;t))= (R;)cos(kR; )ex
e amr | (277)3 Ra, Pl
in(kR;)exp{ — [ +2g(R
(2‘”) R;#0

which is our final result for the time evolution of the di-
agonal elements of the coarse-grained density matrix.
The initial condition enters this expression via the
Fourier coefficients, a (R;) and b (R;), on the initial den-
sity matrix. The second and the third terms of the rhs of
Eq. (7.5) decay in time exponentially. The physical mean-
ing of this result is that the equilibrium state of the
Haken-Strobl model corresponds to the uniform popula-
tion of the states within the exciton band

(plhk,k;1))eq= lim {p(k,k;0))=(1/2m)". (7.6)
t—

The expression for the coarse-grained density matrix, Eq.

(7.5), allows us to calculate the average exciton energy for

arbitrary initial conditions. In Sec. VI it was shown that

the incoherent part of the Hamiltonian does not contrib-

ute to the average energy. Therefore

E(t)= fd3q e(q){p(q,q;t))

=h(0) {1+ 3 A(R;)expf

R;#0

—[TC—2g(R;)]t}

(7.7)

Thus the average energy of the exciton tends to the equi-
librium value, which coincides with the site energy, A (0).

P#(0,5;p)—puls)= T [ d’q $(0,q;p)

(2 @)

+fd3qR (5,9)$(0,q;p) ]

(7.1)
where u(s) is the diagonal element of the initial coarse-
grained density matrix: u(s)=F(0,5s;0). The integral
equation, Eq. (7.1), is solved in Appendix B. The final re-

sult is
a(R; R;
$(0,53p)=—1 3 — Sl [cos(sR,)
(27) (P‘F) R;#0 [P ~2g(Ri)]
b(R;)sin(sR;)
[p+28(R)] ||
(7.2)
where the summation is over the vectors of the lattice,
and a(R;) and b(R;) are the Fourier expansion

coefficients of the initial density matrix
a(R)= fd3q cos(gR; )u(q),
b(R;)= [ d’qsin(gR;)u(g).

(7.3)
(7.4)

The inverse Laplace transformation of Eq. (7.2) gives

[T—2g(R;)]t}

)]t} (7.5)

f

The latter is reached on the time scale 7,~1/T. The
average momentum of the exciton can be obtained in a
similar way. The common feature of all these results is
that the physical observables equilibrate on the time scale
t~7,. Thus 7, is the characteristic time scale of the
Haken-Strobl model. First, it is the time scale on which
the exciton reaches thermal equilibrium with the thermal
bath. Second, it is also the time scale on which the exci-
ton phase coherence is destroyed and its motion becomes
diffusive.

Returning to the properties of the model, one can see
that the first two of them are in fact associated with the
choice of the initial condition. On the other hand,; van-
ishing mobility is a characteristic feature of the Haken-
Strobl model. Finally, the apparent breakdown of the
Nernst-Einstein relations is associated with the fact that
the model corresponds to the limit of infinite temperature
(T — ).

VIII. SUMMING UP

A. Results

Results of this work can be summarized as follows.
(1) Solution of the general 3D Haken-Strobl model
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with non-nearest-neighbor interactions has been obtained
for the arbitrary initial condition. The equilibrium state
of the system has been shown to correspond to the uni-
form population of the states in the excitonic band.

(2) An efficient method of evaluation of the moments of
displacement within the model has been developed. Ex-
plicit analytic expressions for the first two nonvanishing
moments of displacement for the three-dimensional lat-
tice with inversion symmetry have been derived.

(3) The expression for the fourth-order moment in-
cludes the contributions from multistep transitions. It
has been shown that the inclusion of these contributions
makes the simple Born approximation for the memory
functions inapplicable.

(4) The energy exchange between the localized excita-
tion and thermal bath vanishes within the model. This
result is related to the vanishing exciton mobility by the
Nyquist theorem.

B. Limitations and extensions

(a) Phenomenological character of the model. In the
Haken-Strobl model the exciton-phonon coupling is de-
scribed via the stochastic field. The correlation func-
tions, g (R;,R j ), are introduced as phenomenological pa-
rameters. They can, however, be calculated from first
principles using the small polaron theory [13—-16]. This
allows one to explore their temperature and pressure
dependence. The results can be compared with the ex-
perimental temperature dependence of the width of the
phononless excited band. If the contribution from the
quadratic exciton-phonon coupling is dominant then
[(T)~=T(0)/sinh*(#iw /kT), with w=wp being the
characteristic (Debye) phonon frequency. This result is
consistent with the experimental temperature dependence
of the zero-phonon linewidth, T (T)~T(0)+aT?, for
triplet excitons in anthracene crystals in the temperature
interval 30-100 K [5].

(b) Zero-correlation-time limit. For the validity of the
zero correlation time limit the exciton bandwidth has to
be much smaller than the phonon bandwidth. This con-
clusion is satisfied for the lowest triplet excitons in molec-
ular crystals. The line shape of the phononless band of
these excitons is Lorentzian in the temperature interval
20-100 K [5,7]. This feature is characteristic of the fats
modulation limit. The situation is different for singlet ex-
citons. The exciton bandwidth in this case is comparable
to the phonon bandwidth. In order to apply the stochas-
tic model to the singlet excitons it has to be extended to
account for the finite correlation time effects. Such an ex-
tension has been suggested by Toyozawa [20] and by
Sumi [21] and studied in a number of papers [51-55].

(c) The absence of energy dissipation. An important

J d% ¢,,(0,55p)

deficiency of the Haken-Strobl model is that the energy
exchange between the exciton and the phonon bath is not
accounted for (the model corresponds formally to the
limit 7— oo). Finite-temperature generalizations of the
model were suggested by Lindenberg and West [56] and
by Capek [57].
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APPENDIX A

Below the expression for the fourth-order moment of
the displacement within the 3D Haken-Strobl model is
derived. We start from the general expression for the
fourth-order moment in terms of the coarse-grained den-
sity matrix:

<?‘u.v7»0 fd s ¢‘uvka O »S3D +F) (Al)
with
4Q(u s;p)
Fiinnal0,53p)= O, 0u ,0u, U, |,

We shall also require the Laplace transform of SLE, Eq.
(3.10)

pdlu,s;p)= +P(u,s)¢(u,s;p)

_1
(2w)3

Q(u) [ d*q ¢(u,q;p)

1
(27)3

+ [d*q R(s,9d(u,q;p) [ (A2)

together with relations

P(0,5)=Q.(0)=P,,,(0,5)=Q,.;, (0)=P},; ,(0,5)=0,
(A3)

Q(0)=23 g(R;)=T,

Ri
(A4)
P =2i Zh R;)R/sin(sR;), (AS)
Q,(0)=—8 zg )RR}, (A6)
P,(0, s)——21 > h(R;)RIR}R/ Asin(sR; ), (A7)
Ri

0 ,,(0)=323 g(R,)RFRR!R!. (A8)

R.

i

Using Eq. (A2) together with Egs. (A3)—-(A8) we obtain

1

=ﬁ{[KV"”(p)+K“)“’(p)+K“V”(p)+K’“’"p)]+[LVM p)+ MU(p)-f—L#W(pH-LZVA(p)]
+[Q1(0)Z,,(p)+ Q15 (0)Z,, (P)+ Q11 (0Z 2 (p)+ Q33 (0)Z 4 (P)+ Q1 (0)Z,, (p) + Q7 (0)Z,,,(p)]
+Qae(0)/(p —T)}. (A9)
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In Eq. (A9) the following notations have been used:

K (p)= [ d’s P},(0,5)4.1,(0,s5;p), (A10)
Lo (p)= [ d Pl (0,5)6,(0,s;p), (A11)
Z,,(p)= [d’s ¢,(0,5;p). (A12)

Expression for the integral Z, (p) has been already de-
rived [cf. Eq. (4.18)]:

[A(R)]?

VA —— -~ __IRMR?°.
o (P)= C(p— FZE I +2g(R )] |
(A13)
Using Eq. (A7) L, (p) can be recast in the form
L3, (p)=—2i 3 h(R,)R}RR}
Ri
x [d’s sin(sR,)$,(0,5;p).  (A14)

64

_—r)zzg

Q11,(0 ( ORIRIZ (g (R))+

J

Zko’ p)

[p+2g(R)] | /7

The integral in Eq. (A14) has been already evaluated [cf.
Eq. (4.15)]

B, (R;p)= fd3s sin(sR; )¢, (0,s;p)
2ih (R;)R?

T (p—Dp+28(R)] (A15)
It follows that
4 [7(R)T?
i = FRYRMR?
pa(P)= > —T) 2 0 +2g(R )]R, RYR}MR?.  (A16)

Note that the result is symmetric with respect to permu-
tation of the indices y,v,A,0. From Eq. (A8)

1 32

— 0)=—"F"— JRERYRMRC
(P——F) I»‘v?»a( )= p_r)Rzg(Rl)RgR,R;Rl
(A17)
Combining Egs. (A6) and (A 13) we obtain
(RO
DL Agigs. (A18)

The other terms of this type are obtained by trivial permutation of indices. We now turn to evaluation of the integral

K""”(p) Using Eq. (AS5) it can be recast in the form

K (p)=2i 3 h(R)R} [ d’s sin(sR;)¢,(0,5;)=2i 3 h(R;)RFA,;,(R;;p). (A19)
Ri Ri
Straightforward manipulation of SLE, Eq. (A2), leads to
(p +2g(Ri)]AvAa(Ri;P)=mfd3s sin(sR; )Py, (0,5)+[ M2 (R;;p)+ M} (R;;p)+ M (R;p)],
(A20)

where
MY (R;p)= [ d’s sin(sR;)P,(0,5)¢5,(0,5;p).  (A21)
The integral f d3s sin(sR;)

[ d’s sin(sR,)P ), (0,5)=—2i(2w)h (R, )R/R}R{ .

)P’y . (0,s) is readily evaluated

(A22)
It follows that M2 (R;;p) can be recast in the form

M7 (R;;p)=i 3 h(R;)R}
R;
X[Gy,(R;—Rj;p)—

G (R;+R;;p)] (A23)

with

Gro(Ri;p)= [ d3s cos(sR, )¢}, (0,5;p). (A24)

Using the inversion symmetry of the lattice Eq. (A23) can
be rewritten in the form

M2 (R;;p)=2ih (R;)R}Z,,(p)
(#—R;)

~2i 3 h(R;)R}G,,(R,+R;p). (A25)
R
J

[

The problem has been thus reduced to evaluation of the
integrals G, ,(R;;p). Using SLE these integrals can be
expressed in the form

1
G (R, p)=———————— [N, (Ri;p)+ N, (Ry;p)},
A k»P [p—2g(Rk)]{ A kP A(Ry;p)}
(A26)
where
N, (Ry;p)= fd3s cos(sR; )P;(0,s)¢.(0,s;p). (A27)
The integral can be recast as
Ny (Ri;p)=i 3 h(R,)R}
R,
X[BO.(Rk+R1;p)+BO(R1_Rk;p)],
(A28)

where the integral B _(R,;p) has been already evaluated
[cf. Eq. (A15)]. As a result we obtain
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h(Ry+R;,(RZ+R/) h(R;—R, )XR/—R])
Nxa(RUP):_‘z—zh(Rz)Rz}‘ k 1 N Ky 1 1 kAR k
(p—D) % [p +2g8 (R, +R))] [p +2g(R;—Ry)]
h(R;)h (R, +R,;)
= 4 Lk L RMRZ+RY), (A29)

~ (p—D) £1p +2 (R, +R))]

where the inversion symmetry of the lattice has been employed. Substitution into Eq. (A26) leads to

G,,(Ry,p)=—
e Rl =" 0l —28 (R,)] 2 Tp +28 (R TR )]

[RMRZ+R)+RI(RIHRDM] (A30)

and from Eq. (A25)
M7 (R;p)=2ih (R;)R}Z;,(p)
L 8 ‘;ERH h(R;)R} h(R)Dh (R, +R))
=T % [P=28(R;+R;)] % [P +28 (R, +R))]

[RMRZ+RS)+RZ(RMRM].  (A31)

Combining Egs. (A19) and (A20) we obtain

4 (A (R)]
KV}\,O’ —
W PERTT RE [p+28(R,)]

RERIRIRY

32 [h (R [h(R;)]

" Rj)+—
(p—r)zkzl_ [p+2g(R,~)]R2j gy [p +2g(R))]

+

[RFRIR}RY+RFRMR}RF+RFRIRYR}M

16 h(R;)) R h(R;) h(ROh(R;+R;+R,) . (A32)
(p—T) ¢ [p+28(R))] ry [P —2¢(R;+R))] &’ [p +28(R;+R;+R,)] B

where the tensor é‘;"" is defined as

EM=RPF(RY+R}+RYNRFRI+RMRE)+(R}M+RMHRH(R/RE+RIRY)+(RZ+R7+RINRIRE+TRIRY)].

(A33)
[
The first term in Eq. (A32) is symmetric with respect to 1 h(R;)
permutation of the indices. Finally we obtain the follow- Yo p)=——3 [p FT+22(R)]
ing expression for the Laplace transform of the fourth- P" R P SRR
order moment of displacement: (#—R;) h(R.)
> [ +I“—2g(jR +R;)]
(P fno(P)) =Y he (P F V() Y0 () (A34) T Y
% h(R A (R;+R;+Ry)
with % [p+T+2g(R;+R;+Ry)]
(A37)
T;le)ka(P):% S 1g(R)+ [h(R)T wi;‘h E,o being the totally symmetric fourth-rank ten-
Iy [p +T+2g(R;)] sor:
Epno =60 H O+ o0 (A38)
vRpApo
XRERR/R/, (A35) and £ defined by Eq. (A33).
Y hoP)=2p[ (P 2p)) (P 3,(p)) + (P2, () (7 2,(p)) APPENDIX B
+(3 i LN P L] (A36) Below we obtain the solution of the stochastic Liouville

equation for arbitrary initial conditions. Our starting
and point will be Eq. (7.1) for the Laplace transform of the di-
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agonal elements of the coarse-grained density matrix:

T [d’q $(0,q;p)

1
(0,5;p)—uls)=
pé(0,s;p)—pls 2]

+ [d?g R(5,9)4(0,43p) |,

(B1)
where
u(s)=F(0,s;0)
is the normalized coarse-grained density matrix for t =0:

[’ us)=1. (B2)

fd3s R (s,q)=0 leads to

3 S S
[ d3s (0,5;p) TES oL

Substitution of Eq. (B3) into Eq. (B1) leads to the integral
equation for the ¢(0,s;p) function

(B3)

1
0,s;p)— d3q R (s,9)$(0,q;
$(0,s;p) (27)3pf q R (s,9)$(0,q;p)
1 1 r
=—lu(s)+ — L
P P T ey =y [ BY

Due to the oscillatory form of the kernel, R (s,q), the re-
sulting Fredholm integral equation can be solved easily.
For this purpose we substitute the explicit form of R (s,q)

Integration of Eq. (Bl1) with account that into Eq. (B4) leading to
]
qi’(O,s;p):l uis)+ 1 3 L 2 > g(R,‘)cos(sR<)fd3q cos(gR;)¢$(0,q;p)
V4 (27) (P'—r) (27T)3P R,#0 ' ! o
— S g(R;)sin(sR,) [ d3q sin(gR,)$(0,¢;p). (B5)

(277')31’ R;#0

Multiplication of Eq. (B5) by cos(sR;) and integration
gives

fd3s cos(sR;)$(0,s; )=———a—(&2— (B6)
O =2 (R))]
and analogously
[ @3 sin(sR;)$(0,s; =B (B7)
2 g (R)T
Here a (R;) and b(R;) are the Fourier coefficients:
a(R;)= [ d3q cos(¢R;)ulq), (B8)
b(R))= [ d’qsin(gR;)u(q). (B9)

[

Substitution of Egs. (B6) and (B7) into Eq. (B5) leads to
the final result for the Laplace transform of the coarse-
grained density matrix:

-1 1
HOs3P)I= o {(pﬂ“)

a(R;)cos(sR;)
[p —2g(R;)]

R;#0

b (R;)sin(sR;)

»+28 (R,)] (B10)
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